

Nanotechnology and Power Buildings: Solar Power's Surprising Future

B.J. Stanbery, CEO HelioVolt Corporation Austin, TX

HelioVolt Corporation

Will Solar Become a Significant Power Source for the World?

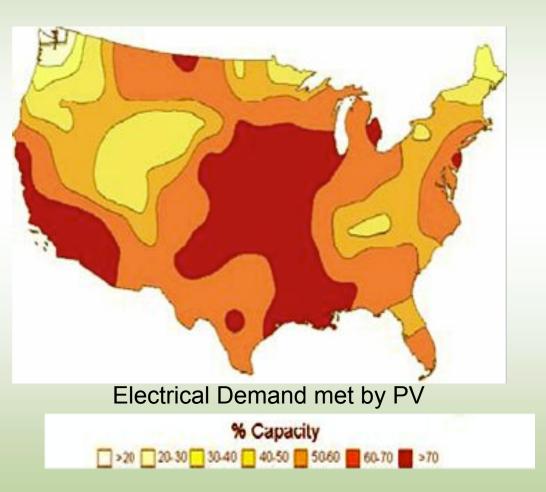
- Solar's role in the world's energy future depends on political choices
 - Will coal's use be limited by
 - CO₂ generation?
 - Will nuclear's use be limited by
 - waste disposal costs and proliferation risk?
- Solar's growth is inevitable
 - Breadth of adoption dependent on
 - New technologies for reduced cost
 - New application paradigm: Power Buildings

Solar Power Today

Silicon Photovoltaic (PV) modules for retrofit

- PV module sales \$3.3B (2004 estimate)
 - PV market 30+% CAGR
- Sales <½% total annual global CapEx for electrical power generation
- Current market limited by price
 - \$3.50/Wp modules + \$3 installation

Solar Power Tomorrow



- Power Buildings will become multi-\$T market
 - PV as an integrated electronic component
- Efficient, durable thin-film solar cells incorporated into traditional building materials
- Current products unsuitable

Power Buildings Market

- Huge latent demand
- USA potential: \$150B/yr
 - 60% share
- Multiple segments
 - Architectural glass
 - Windows & skylights
 - Roofing

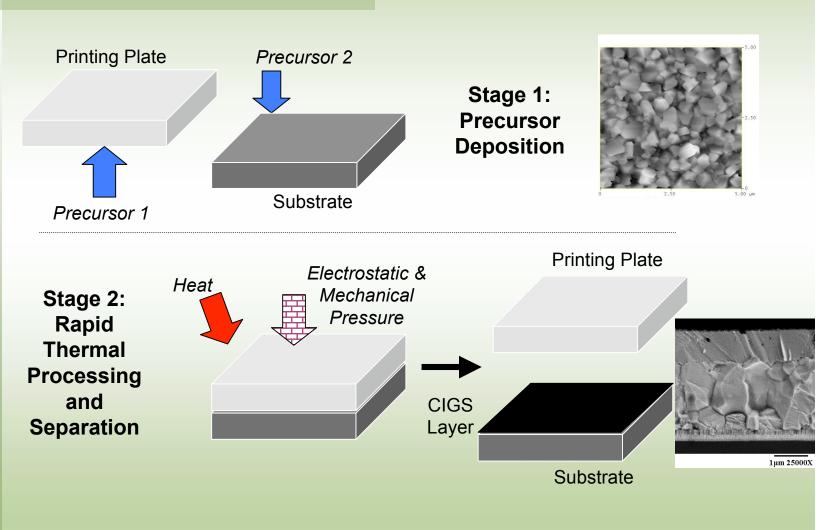
Competitors for the Mass Power Market?

Silicon PV cannot meet needs

- Durable & efficient
- Expensive mature technology
- Low margins
- Organic PV unlikely to meet needs
 - Efficiency & lifetime issues
- Conventional semiconductor thin film currently too expensive

Heliovolt Breakthrough CIGS Platform Technology

- Highest Performance and Durability
 - Copper Indium Gallium Selenide (CIGS): Highest Thin Film Efficiency
 - Currently used for most-demanding applications
- Lowest Cost
 - Less than one third the cost of Silicon PV Cells
- Widest Range of Form Factors
 - Durable and inexpensive coating for glass, metals and polymeric materials


Unique Patented *FASST*™Process

- Field-Assisted Simultaneous Synthesis and Transfer
- Replaces costly slow processing unsuited to mass production

Nanotechnology in HelioVolt's FASSTTM CIGS Process: Precursors

Unique Nanoscience of CIGS

- Inherent to CIGS PV semiconductor
 - Spontaneous nanostructuring
 - Driven by phase segregation
 - Forms internal nano-scale junctions
 - Two phases form different interpenetrating percolation networks for each carrier type
 - Explains CIGS performance & robustness
- New scientific insight
 - Suggests novel pathways for cost & performance improvement

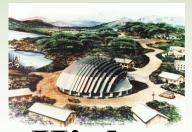
Nanotechnology and Buildings: Changes for the Electrical Industry

Generation

 Integration of CIGS PV as Coatings on Building Construction Materials

Conservation

Nanotechnology application to improved insulation, lower cost low-E windows


Transmission

- Need reduced by distributed generation:
 - Power produced at the point of consumption
 - Inherent benefit of PV Power Buildings

HelioVolt Corporation

World's Highest Performance, Lowest Cost, & Most Versatile Solar Power Platform

